FP2 Differentiation

1. June 2010 qu. 1

It is given that $\mathrm{f}(x)=\tan ^{-1} 2 x$ and $\mathrm{g}(x)=p \tan ^{-1} x$, where p is a constant.
Find the value of p for which $\mathrm{f}^{\prime}\left(\frac{1}{2}\right)=g^{\prime}\left(\frac{1}{2}\right)$.
2. June 2010 qu. 2

It is given that $\mathrm{f}(x)=\tan ^{-1}(1+x)$.
(i) Find $f(0)$ and $f^{\prime}(0)$, and show that $\mathrm{f}^{\prime \prime}(0)=-\frac{1}{2}$.
(ii) Hence find the Maclaurin series for $\mathrm{f}(x)$ up to and including the term in x^{2}.
3. Jan 2010 qu. 1
(i) Given that $y=\tanh ^{-1} x$, for $-1<x<1$, prove that $y=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$.
(ii) It is given that $\mathrm{f}(x)=a \cosh x-b \sinh x$, where a and b are positive constants.
(a) Given that $b \geq a$, show that the curve with equation $y=\mathrm{f}(x)$ has no stationary points.
(b) In the case where $a>1$ and $b=1$, show that $\mathrm{f}(x)$ has a minimum value of $\sqrt{a^{2}-1}$.
4. June 2009 qu. 3
(i) Given that $\mathrm{f}(x)=\mathrm{e}^{\sin x}$, find $\mathrm{f}^{\prime}(0)$ and $\mathrm{f}^{\prime \prime}(0)$.
(ii) Hence find the first three terms of the Maclaurin series for $\mathrm{f}(x)$.
5. Jan 2009 qu. 1
(i) Write down and simplify the first three terms of the Maclaurin series for $\mathrm{e}^{2 x}$.
(ii) Hence show that the Maclaurin series for $\ln \left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)$ begins $\ln a+b x^{2}$, where a and b are constants to be found.
6. Jan 2009 qu. 3
(i) Prove that the derivative of $\sin ^{-1} x$ is $\frac{1}{\sqrt{1-x^{2}}}$.
(ii) Given that $\quad \sin ^{-1} 2 x+\sin ^{-1} y=\frac{1}{2} \pi$, find the exact value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=\frac{1}{4}$.
7. June 2008 qu. 7

It is given that $\mathrm{f}(x)=\tanh ^{-1}\left(\frac{1-x}{2+x}\right)$, for $x>-\frac{1}{2}$.
(i) Show that $\mathrm{f}^{\prime}(x)=-\frac{1}{1+2 x}$, and find $\mathrm{f}^{\prime \prime}(x)$.
(ii) Show that the first three terms of the Maclaurin series for $\mathrm{f}(x)$ can be written as $\ln a+b x+c x^{2}$, for constants a, b and c to be found.
8. Jan 2008 qu. 1

It is given that $\mathrm{f}(x)=\ln (1+\cos x)$.
(i) Find the exact values of $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0)$.
(ii) Hence find the first two non-zero terms of the Maclaurin series for $\mathrm{f}(x)$.
9. Jan 2008 qu. 2

The diagram shows parts of the curves with equations $y=\cos ^{-1} x$ and $y=\frac{1}{2} \sin ^{-1} \mathrm{x}$ and their point of intersection P.
(i) Verify that the coordinates of P are $\left(\frac{1}{2} \sqrt{3}, \frac{1}{6} \pi\right)$
(ii) Find the gradient of each curve at P.
10. Jan 2008 qu. 5

The diagram shows the curve with equation $y=x \mathrm{e}^{-x}+1$. The curve crosses the x-axis at $x=\alpha$.
(i) Use differentiation to show that the x-coordinate of the stationary point is 1 .
α is to be found using the Newton-Raphson method, with $\mathrm{f}(x)=x \mathrm{e}^{-x}+1$.
(ii) Explain why this method will not converge to α if an initial approximation x_{1} is chosen such that $x_{1}>1$.
(iii) Use this method, with a first approximation $x_{1}=0$, to find the next three approximations x_{2}, x_{3} and x_{4}. Find α, correct to 3 decimal places.
11. Jan 2008 qu. 9
(i) Prove that $\frac{d}{d x}\left(\cosh ^{-1} x\right)=\frac{1}{\sqrt{x^{2}-1}}$
(ii) Hence, or otherwise, find $\int \frac{1}{\sqrt{4 x^{2}-1}} \mathrm{~d} x$.
(iii) By means of a suitable substitution, find $\int \sqrt{4 x^{2}-1} \mathrm{~d} x$.
12. June 2007 qu. 2
(i) Given that $\mathrm{f}(x)=\sin \left(2 \mathrm{x}+\frac{\pi}{4}\right)$, show that $\mathrm{f}(x)=\frac{1}{2} \sqrt{2}(\sin 2 x+\cos 2 x)$
(ii) Hence find the first four terms of the Maclaurin series for $\mathrm{f}(x)$. [You may use appropriate results given in the List of Formulae.]
13. June 2007 qu. 4
(i) Given that $y=x \sqrt{1-x^{2}}-\cos ^{-1} x$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in a simplified form.
(ii) Hence, or otherwise, find the exact value of $\int_{0}^{1} 2 \sqrt{1-x^{2}} \mathrm{~d} x$.
14. Jan 2007 qu. 1

It is given that $\mathrm{f}(x)=\ln (3+x)$.
(i) Find the exact values of (0) and $f^{\prime}(0)$, and show that $f^{\prime \prime}(0)=-\frac{1}{9}$.
(ii) Hence write down the first three terms of the Maclaurin series for $\mathrm{f}(x)$, given that $-3<x \leq 3$.
15. June 2006 qu. 1

Find the first three non-zero terms of the Maclaurin series for $(1+x) \sin x$, simplifying the coefficients.
16. June 2006 qu. 2
(i) Given that $y=\tan ^{-1} x$, prove that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1+x^{2}}$.
(ii) Verify that $y=\tan ^{-1} x$ satisfies the equation $\quad\left(1+x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$.
17. Jan 2006 qu. 1
(i) Write down and simplify the first three non-zero terms of the Maclaurin series for

$$
\begin{equation*}
\ln (1+3 x) \tag{3}
\end{equation*}
$$

(ii) Hence find the first three non-zero terms of the Maclaurin series for $\mathrm{e}^{x} \ln (1+3 x)$, simplifying the coefficients.
18. June 2010 qu. 3

Given that the first three terms of the Maclaurin series for $(1+\sin x) \mathrm{e}^{2 x}$ are identical to the first three terms of the binomial series for $(1+a x)^{n}$, find the values of the constants a and n. (You may use appropriate results given in the List of Formulae (MF1).)

